Pandas Python Cheat Sheet

broken image


  1. Pandas Python Cheat Sheet
  2. Pandas Cheat Sheet Pdf
  3. Pandas Python Cheat Sheet Pdf

Pandas is arguably the most important Python package for data science. Not only does it give you lots of methods and functions that make working with data easier, but it has been optimized for speed which gives you a significant advantage compared with working with numeric data using Python's built-in functions.

It's common when first learning pandas to have trouble remembering all the functions and methods that you need, and while at Dataquest we advocate getting used to consulting the pandas documentation, sometimes it's nice to have a handy reference, so we've put together this cheat sheet to help you out!

If you're interested in learning pandas, you can consult our two-part pandas tutorial blog post, or you can signup for free and start learning pandas through our interactive pandas for data science course.

Python for Data Science Cheat Sheets. Python is one of the most widely used programming languages in the data science field.Python has many packages and libraries that are specifically tailored for certain functions, including pandas, NumPy, scikit-learn, Matplotlib, and SciPy.The most appealing quality of Python is that anyone who wants to learn it, even beginners, can do so quickly and easily. This cheat sheet on data exploration operation in Python using Pandas is your go-to resource to know each step involved in data exploration. You will find cheat codes for reading & writing data, preview of dataframes, rename columns of dataframe, aggregate the data, etc. Python - Pandas Cheat Sheet by Pitbull (aggialavura) via cheatography.com/83764/cs/19829/ TO START import numpy as np import pandas as pd SERIES (similar to numpy array) pd.Series(data = list) create. Python notebook using data from Kernel Files 21,941 views 1y ago programming. Copy and Edit 281. Version 13 of 13. Table of Contents Data Structures Numpy Pandas. Input (1) Output Execution Info Log Comments (14) Cell link copied. This Notebook has been released under the Apache 2.0 open source license. Much like the other cheat sheets, there is comprehensive coverage of the pandas basic in here. So, that includes filtering, sorting, importing, exploring, and combining DataFrames. However, where this Cheat Sheet differs is that it finishes off with an excellent section on scikit-learn, Python's machine learning library.

Key and Imports

In this cheat sheet, we use the following shorthand:

Pandas Python Cheat Sheet

dfAny pandas DataFrame object
sAny pandas Series object

You'll also need to perform the following imports to get started:

Importing Data

Pandas Python Cheat Sheet
pd.read_csv(filename)From a CSV file
pd.read_table(filename)From a delimited text file (like TSV)
pd.read_excel(filename)From an Excel file
pd.read_sql(query, connection_object)Read from a SQL table/database
pd.read_json(json_string)Read from a JSON formatted string, URL or file.
pd.read_html(url)Parses an html URL, string or file and extracts tables to a list of dataframes
pd.read_clipboard()Takes the contents of your clipboard and passes it to read_table()
pd.DataFrame(dict)From a dict, keys for columns names, values for data as lists

Exporting Data

df.to_csv(filename)Write to a CSV file
df.to_excel(filename)Write to an Excel file
df.to_sql(table_name, connection_object)Write to a SQL table
df.to_json(filename)Write to a file in JSON format

Create Test Objects

Useful for testing code segements

pd.DataFrame(np.random.rand(20,5))5 columns and 20 rows of random floats
pd.Series(my_list)Create a series from an iterable my_list
df.index = pd.date_range('1900/1/30', periods=df.shape[0])Add a date index

Viewing/Inspecting Data

df.head(n)First n rows of the DataFrame
df.tail(n)Last n rows of the DataFrame
df.shape()Number of rows and columns
df.info()Index, Datatype and Memory information
df.describe()Summary statistics for numerical columns
s.value_counts(dropna=False)View unique values and counts
df.apply(pd.Series.value_counts)Unique values and counts for all columns

Selection

df[col]Return column with label col as Series
df[[col1, col2]]Return Columns as a new DataFrame
s.iloc[0]Selection by position
s.loc['index_one']Selection by index
df.iloc[0,:]First row
df.iloc[0,0]First element of first column

Data Cleaning

df.columns = ['a','b','c']Rename columns
pd.isnull()Checks for null Values, Returns Boolean Arrray
pd.notnull()Opposite of pd.isnull()
df.dropna()Drop all rows that contain null values
df.dropna(axis=1)Drop all columns that contain null values
df.dropna(axis=1,thresh=n)Drop all rows have have less than n non null values
df.fillna(x)Replace all null values with x
s.fillna(s.mean())Replace all null values with the mean (mean can be replaced with almost any function from the statistics section)
s.astype(float)Convert the datatype of the series to float
s.replace(1,'one')Replace all values equal to 1 with 'one'
s.replace([1,3],['one','three'])Replace all 1 with 'one' and 3 with 'three'
df.rename(columns=lambda x: x + 1)Mass renaming of columns
df.rename(columns={'old_name': 'new_ name'})Selective renaming
df.set_index('column_one')Change the index
df.rename(index=lambda x: x + 1)Mass renaming of index

Filter, Sort & Groupby

df[df[col] > 0.5]Rows where the col column is greater than 0.5
df[(df[col] > 0.5) & (1.7)]Rows where 0.7 > col > 0.5
df.sort_values(col1)Sort values by col1 in ascending order
df.sort_values(col2,ascending=False)Sort values by col2 in descending order
df.sort_values([col1,ascending=[True,False])Sort values by col1 in ascending order then col2 in descending order
df.groupby(col)Return a groupby object for values from one column
df.groupby([col1,col2])Return groupby object for values from multiple columns
df.groupby(col1)[col2]Return the mean of the values in col2, grouped by the values in col1 (mean can be replaced with almost any function from the statistics section)
df.pivot_table(index=col1,values=[col2,col3],aggfunc=max)Create a pivot table that groups by col1 and calculates the mean of col2 and col3
df.groupby(col1).agg(np.mean)Find the average across all columns for every unique col1 group
data.apply(np.mean)Apply a function across each column
data.apply(np.max,axis=1)Apply a function across each row

Join/Comine

df1.append(df2)Add the rows in df1 to the end of df2 (columns should be identical)
df.concat([df1, df2],axis=1)Add the columns in df1 to the end of df2 (rows should be identical)
df1.join(df2,on=col1,how='inner')SQL-style join the columns in df1 with the columns on df2 where the rows for col have identical values. how can be one of 'left', 'right', 'outer', 'inner'
Pandas

Statistics

These can all be applied to a series as well.

df.describe()Summary statistics for numerical columns
df.mean()Return the mean of all columns
df.corr()Finds the correlation between columns in a DataFrame.
df.count()Counts the number of non-null values in each DataFrame column.
df.max()Finds the highest value in each column.
df.min()Finds the lowest value in each column.
df.median()Finds the median of each column.
df.std()Finds the standard deviation of each column.

Download a printable version of this cheat sheet

If you'd like to download a printable version of this cheat sheet you can do so below.

This Pandas cheat sheet through the basics of Pandas that you will need to get started on wrangling your data with Python.

The Pandas cheat sheet will guide you through the basics of Pandas, going from the data structures to reading, writing, selection, dropping indices or columns, sorting and ranking, retrieving basic info of the data structures you're working with to applying functions and data alignment.

Importing Data

Pandas library offers a set of reader functions that can be performed on a wide range of file Pandas cheat sheet for importing data.

Exporting Data

list of write operations which are useful while writing data into a file – pandas cheat sheet for exporting data.

Viewing/Inspecting Data

Create Test Objects

Selection

Pandas Cheat Sheet Pdf

Selecting by position and selecting by label.

Data Cleaning

Sort, Filter and Group-by

Very useful feature offered by Pandas is the sorting of DataFrame – pandas cheat sheet for sorting, filtering & group by.

Pandas Python Cheat Sheet Pdf

Python
pd.read_csv(filename)From a CSV file
pd.read_table(filename)From a delimited text file (like TSV)
pd.read_excel(filename)From an Excel file
pd.read_sql(query, connection_object)Read from a SQL table/database
pd.read_json(json_string)Read from a JSON formatted string, URL or file.
pd.read_html(url)Parses an html URL, string or file and extracts tables to a list of dataframes
pd.read_clipboard()Takes the contents of your clipboard and passes it to read_table()
pd.DataFrame(dict)From a dict, keys for columns names, values for data as lists

Exporting Data

df.to_csv(filename)Write to a CSV file
df.to_excel(filename)Write to an Excel file
df.to_sql(table_name, connection_object)Write to a SQL table
df.to_json(filename)Write to a file in JSON format

Create Test Objects

Useful for testing code segements

pd.DataFrame(np.random.rand(20,5))5 columns and 20 rows of random floats
pd.Series(my_list)Create a series from an iterable my_list
df.index = pd.date_range('1900/1/30', periods=df.shape[0])Add a date index

Viewing/Inspecting Data

df.head(n)First n rows of the DataFrame
df.tail(n)Last n rows of the DataFrame
df.shape()Number of rows and columns
df.info()Index, Datatype and Memory information
df.describe()Summary statistics for numerical columns
s.value_counts(dropna=False)View unique values and counts
df.apply(pd.Series.value_counts)Unique values and counts for all columns

Selection

df[col]Return column with label col as Series
df[[col1, col2]]Return Columns as a new DataFrame
s.iloc[0]Selection by position
s.loc['index_one']Selection by index
df.iloc[0,:]First row
df.iloc[0,0]First element of first column

Data Cleaning

df.columns = ['a','b','c']Rename columns
pd.isnull()Checks for null Values, Returns Boolean Arrray
pd.notnull()Opposite of pd.isnull()
df.dropna()Drop all rows that contain null values
df.dropna(axis=1)Drop all columns that contain null values
df.dropna(axis=1,thresh=n)Drop all rows have have less than n non null values
df.fillna(x)Replace all null values with x
s.fillna(s.mean())Replace all null values with the mean (mean can be replaced with almost any function from the statistics section)
s.astype(float)Convert the datatype of the series to float
s.replace(1,'one')Replace all values equal to 1 with 'one'
s.replace([1,3],['one','three'])Replace all 1 with 'one' and 3 with 'three'
df.rename(columns=lambda x: x + 1)Mass renaming of columns
df.rename(columns={'old_name': 'new_ name'})Selective renaming
df.set_index('column_one')Change the index
df.rename(index=lambda x: x + 1)Mass renaming of index

Filter, Sort & Groupby

df[df[col] > 0.5]Rows where the col column is greater than 0.5
df[(df[col] > 0.5) & (1.7)]Rows where 0.7 > col > 0.5
df.sort_values(col1)Sort values by col1 in ascending order
df.sort_values(col2,ascending=False)Sort values by col2 in descending order
df.sort_values([col1,ascending=[True,False])Sort values by col1 in ascending order then col2 in descending order
df.groupby(col)Return a groupby object for values from one column
df.groupby([col1,col2])Return groupby object for values from multiple columns
df.groupby(col1)[col2]Return the mean of the values in col2, grouped by the values in col1 (mean can be replaced with almost any function from the statistics section)
df.pivot_table(index=col1,values=[col2,col3],aggfunc=max)Create a pivot table that groups by col1 and calculates the mean of col2 and col3
df.groupby(col1).agg(np.mean)Find the average across all columns for every unique col1 group
data.apply(np.mean)Apply a function across each column
data.apply(np.max,axis=1)Apply a function across each row

Join/Comine

df1.append(df2)Add the rows in df1 to the end of df2 (columns should be identical)
df.concat([df1, df2],axis=1)Add the columns in df1 to the end of df2 (rows should be identical)
df1.join(df2,on=col1,how='inner')SQL-style join the columns in df1 with the columns on df2 where the rows for col have identical values. how can be one of 'left', 'right', 'outer', 'inner'

Statistics

These can all be applied to a series as well.

df.describe()Summary statistics for numerical columns
df.mean()Return the mean of all columns
df.corr()Finds the correlation between columns in a DataFrame.
df.count()Counts the number of non-null values in each DataFrame column.
df.max()Finds the highest value in each column.
df.min()Finds the lowest value in each column.
df.median()Finds the median of each column.
df.std()Finds the standard deviation of each column.

Download a printable version of this cheat sheet

If you'd like to download a printable version of this cheat sheet you can do so below.

This Pandas cheat sheet through the basics of Pandas that you will need to get started on wrangling your data with Python.

The Pandas cheat sheet will guide you through the basics of Pandas, going from the data structures to reading, writing, selection, dropping indices or columns, sorting and ranking, retrieving basic info of the data structures you're working with to applying functions and data alignment.

Importing Data

Pandas library offers a set of reader functions that can be performed on a wide range of file Pandas cheat sheet for importing data.

Exporting Data

list of write operations which are useful while writing data into a file – pandas cheat sheet for exporting data.

Viewing/Inspecting Data

Create Test Objects

Selection

Pandas Cheat Sheet Pdf

Selecting by position and selecting by label.

Data Cleaning

Sort, Filter and Group-by

Very useful feature offered by Pandas is the sorting of DataFrame – pandas cheat sheet for sorting, filtering & group by.

Pandas Python Cheat Sheet Pdf

Join/Combine

Statistics





broken image